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Variational Principle for Some
Renormalized Measures
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We show that some measures suffering from the so-called renormalization group
pathologies satisfy a variational principle and that the corresponding limit of the
pressure, with boundary conditions in a set of measure 1, is equal to the
pressure of the Ising model modulo a scale factor.

KEY WORDS: Renormalization group pathologies; variational principle;
weakly Gibbsian; Gibbs measures.

1. INTRODUCTION

The general problem of determining whether a given measure is an equi-
librium distribution for an infinite collection of microscopic components in
interaction has recently received much attention, in particular in real-space
Renormalization Group theory.(7�9, 20, 21, 19, 22, 18) In the work of van Enter,
Fernandez and Sokal, (21) many examples of so-called Renormalization
Group pathologies are exhibited, which suggest that a Gibbsian description
(i.e. in terms of microscopic interactions) of many measures obtained by a
Renormalization Group transformation (RGT) from a low-temperature
Ising measure may prove to be impossible.

Subsequently, there have been many successful attempts to bring
several examples considered in ref. 21 back into the Gibbslan framework.
One direction has been to show that after sufficiently many iterations of the
transformations the measure obtained is again Gibbsian in the standard
sense.(15, 16) Another direction, suggested by Dobrushin, (2) has been to relax
the constraints imposed on the interactions, roughly speaking the interac-
tion of one microscopic component with all the others is no more required
to be finite for every microscopic configurations but only for almost every
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(with respect to the measure under study) configurations. It has been
shown(14) that the projected measures of the Schonmann(17) example can be
described with the help of such a potential and in ref. 1, it is shown that
several RGT examples of ref. 21 are also Gibbsian with a potential satis-
fying this weaker constraint, the pathologies being in some sense analogous
to the Griffith singularities.(6) As this potential is not in the ``Israel's big
Banach space,'' the standard thermodynamic theory does not apply and
our goal here is to investigate its thermodynamic properties, as suggested
in ref. 12. In particular, we prove the existence of the pressure (with bound-
ary conditions in a large set) and of the average energy density for a class
of tempered measures. We also prove a variational principle for the renor-
malized measures considered in ref. 1 and thereby obtain a nice charac-
terization of those measures. The situation here is somewhat similar to the
case of unbounded spins systems, (11, 10) if one makes an analogy between
the size of a ``bad cluster'' in our case and the value of an unbounded spin.
In the case of unbounded spins, one imposes a condition of moderate
growth of the boundary condition, in order to prove the existence of the
thermodynamic limit of the free energy; we obtain a completely similar
condition on the growth of the bad clusters. Moreover, in order to for-
mulate a variational principle, as the potential is not uniformly absolutely
summable, it is necessary to introduce a class of tempered measures such
that the expectation value of the energy density is finite. These tempered
measures are characterized by the fact that they give a small probability to
the occurence of a large ``bad cluster'' around any given point.

The paper is organized as follows; in Section 2, we give the definition
of the notion of ``weakly'' Gibbsian, briefly recall the results obtained in
ref. 1 and define the appropriate thermodynamic quantitites. In Section 3,
we outline the construction of the potential of ref. 1 and introduce a class
of tempered measures. In Section 4, we state our main results. Section 5 is
devoted to the proof of our main result and in the Appendix we collected
the proofs of the lemmas and the proof of some statements in the main text
that can be easily derived from ref. 1.

2. DEFINITIONS

We follow closely the notations and notions introduced in ref. 1. We
consider the nearest-neighbour Ising model on Zd, d�2, at ; large, for
simplicity. To each i # Zd, we associate a variable _i # [&1, +1], and the
(formal) Ising Hamiltonian is

&;H I=; :
(ij)

(_i_ j&1) (1)
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where (ij) denotes a nearest-neighbour pair and ; is the inverse tem-
perature. At low temperatures, there are two extremal translation invariant
Gibbs measures corresponding to (1), ++ and +& . To define our RGT, let
L=(bZ)d, b # N, b�2 and cover Zd with disjoint b-boxes Bx=B0+x,
x # L where B0 is a box of size b centered around 0. Associate to each
x # L a variable sx # [&1, +1], denote by _A an element of [&1, +1]A,
for A/Zd, |A|<�, and introduce the probability kernels

Tx=T (_Bx
, sx)

for x # L, i.e. Tx satisfies

(1) T (_Bx
, sx)�0

(2)
(2) :

sx

T (_Bx
, sx)=1

We shall use the notation T (_BV
, sV)#>x # V T (_Bx

, sx).
For any probability measure + on [&1, +1]Zd

(resp. [&1, +1]L),
we denote by +(_A) (resp. +(sA)) the probability of the configuration _A

(resp. sA).

Definition. Given a measure + on [&1, +1]Z d
, the renormalized

measure +$ on 0=[&1, +1]L is defined by:

+$(sA)= :
_BA

+(_BA
) `

s # A

T (_Bx
, sx) (3)

where BA=�x # A Bx , A/L, |A|<�, and sA # 0A=[&1, +1]A.
It is easy to check, using (1) and (2), that +$ is a measure. We shall

call the spins _i the internal spins and the spins sx the external ones (they
are also sometimes called the block spins).

Two other conditions are imposed on T: we assume that T is sym-
metric:

T (_Bx
, sx)=T (&_Bx

, &sx) (4)

and that

0�T (_Bx
, sx)�e&; (5)

if _i{sx \i # Bx .
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The condition (5) means that there is a coupling which tends to align
sx and the spins in the block Bx . We also define

T� #T ([_i=+1]i # Bx
, +1) (6)

The usual transformations, discussed in [21, Sect. 3.1.2], like decimation or
majority rule, obviously satisfy (4, 5). The Kadanoff transformation
satisfies (5) for p large. As in ref. 1, our results could be extended to the
block spin transformations, where sx does not belong to [&1, +1].

Consider potentials (interactions) 8=(8X) which are families of func-
tions

8X : 0X � R (7)

indexed by X/L, |X |<�.
We say that a potential is 0� -pointwise absolutely summable, with

0� /0, if

:
X % x

|8x(sx)|<� \x # L, \s # 0� (8)

Then, if 0� is in the tail-field, one may define a Hamiltonian in a finite
volume V with boundary conditions s� # 0� by the usual formula:

H(sV | s� V c)=& :
X & V{<

8X (sX & V 6 s� X & V c) (9)

where sV # 0V , s� Vc is the restriction to V c of s� # 0� and, for X & Y=<,
sX 6 sY denotes the obvious configuration in 0X _ Y we need the fact that
0� is in the tail-field because then if s� # 0� then for all finite V and all s, one
has sV 6 s� Vc # 0� . In particular, we denote by H(sV | +), the Hamiltonian
with the configuration s� such that sx=+1 for all x # L and H(sV | f )=
&�X/V 8X (sX), the Hamiltonian with free boundary conditions.

The main result of ref. 1 is the following, for ; large enough, the renor-
malized measures +$+ and +$& are ``Gibbsian'' in the following sense: there
exist a translation-invariant set 0� (hence in the tail-field), and a translation
invariant 0� -pointwise absolutely summable interaction 8 such that
+$+(0� )=+$&(0� )=1 and for +$+ and +$& there exists a version of the condi-
tional probabilities that satisfy \V/L, |V | finite, \sV # 0V

+$(sV | s� V c)={Z&1(s� V c) exp(&H(sV | s� Vc))
0

for s� # 0�
for s� � 0�

(10)
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In the terminology introduced in ref. 12, the measures +$+ and +$& are
said to be weakly Gibbsian for the potential 8.

Let us now define the thermodynamic quantitites that we shall con-
sider. The partition function corresponding to the above Hamiltonian with
boundary conditions s� # 0 is obviously given by:

Zs�
V=ZV (s� Vc)=:

sV

exp &H(sV | s� V c) (11)

and we shall investigate the existence of the thermodynamic limit,

ps� = lim
V A Zd

1
|V |

log Zs�
V (12)

defining the pressure with fixed boundary conditions. The pressure of the
Ising model on the original lattice is denoted by pIsing we also need to
define the relative entropy of two probability measures and give its basic
properties. Given two probability measures +1 , +2 on [&1, +1]Zd

, we
define the finite volume relative entropy for a volume V in Zd as follows:

SV (+1 | +2)=:
sV

+1(sV) log
+1(sV)
+2(sV)

(13)

One can show that SV (+1 | +2)�0 \+1 , +2 and that SV (+1 | +2)=0 iff the
restriction of +1 and +2 to V coincide. Moreover, it can be proven (see
Lemma 3.3 in ref. 21) that for any stochastic transformations T defined by
(2) (including the deterministic case where T (_Bx

, sx)=1 for some _Bx
) and

any measures +1 , +2 , we have:

SV (+1 | +2)�SV (+$1 | +$2) (14)

We shall need also the following property: consider +1 and +2 , two finite
volume Gibbs measures for the Ising Harniltonian with stochastic boundary
conditions, i.e. +i is given by

+i (_V)= :
_� V c

exp &;H I (_V | _� V c)
Z(_� Vc)

&i (_� V c) (15)

with &i a probability measure on [&1, +1]Zd
. Then,

lim
V A Zd

1
|V |

:
_V

+1(_V) log
+1(_V)
+2(_V)

=0 (16)
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The proof of this property is easy: divide the numerator and the
denominator of the ratio in (16) by the finite volume Gibbs measure with
free boundary conditions; then, because one has

|H I (_V | _� Vc)&H I (_V | f )|�2 |�V | (17)

for all _v and _� V c (where �V denotes the set of sites [x # V | d(x, V c)=1]),
the result follows.

The entropy density of a measure + is given by the following formula:

s(+)= lim
V A Z d

1
|V |

SV (+)# lim
V A Z d

1
|V |

:
sV

+(sV) log +(sV) (18)

this limit is well defined and finite for any translation invariant + on
[&1, +1]Zd

.(5)

3. CONSTRUCTION OF THE POTENTIALS AND THE
TEMPERED MEASURES

Here and in the following sections, we shall denote by c or C a generic
constant that depends only on the dimension or on b, but not on the
choice of the parameters L and : (see below). C(L) or C(=) will denote
some generic constants depending on their arguments. The value of all of
those constants may change from place to place.

3.1. The Potentials

Let us now recall briefly the construction of the potentials and of the
set 0� obtained in ref. 1, we refer to that paper for further details. First, one
introduces a (random) subset of L

D(s)=. [Bx |x # L, _y # l, |x& y|=b, sx{sy] (19)

which is described on different coarse grained scales, as we shall see below.
We also define DV (sV) by replacing L by V in the above definition. Let
:>0 and L>b be some odd integer (which will be taken large enough so
that inequalities like C<L: hold). Divide Zd into disjoint L-boxes
[i | |i&Lx|<L�2] where x # Zd, i.e. each i # Zd can be written as i=Lx+ j
with x # Zd and | j+ |<L�2, +=1,..., d (here and below, we use the letters x,
y to denote sites in the new lattices Zd). we define [L&1i]=x and the
L-box of sites i such that [L&1i]=x is denoted by Lx. Also for a set
Y/Zd, LY=� [Lx | x # Y ]. We use a similar notation for all scales Ln,
n=1, 2,... .
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We shall now describe D(s) on these different coarse-grained scales.
Let us introduce the random variables N n

x=N n
x(s), n=0, 1, 2..., defined

inductively as follows:

N 0
x=2d if x # D(s)

(20)
N 0

x=0 otherwise

N n+1
x$ =L&1+4: :

y # Lx$"D n(s)

N n
y (21)

where

Dn(s)=[Di | D i is a connected component of Dn(s),

|Di |�L:, N n(Di)�L&3:] (22)

with D0(s)=D(s);

Nn(Y )= :
x # Y

N n
x (23)

for Y/Zd, and

Dn+1(s)=[L&1(Dn(s)"Dn(s))] (24)

where, for a set Y/Zd, we write:

Y� =[i | d(i, Y )�1] (25)

It is easy to see inductively that

N n
x=0 if x � Dn(s) (26)

and

Dn(s)/[x | N n
x{0] (27)

We also define variable N n
x, V and sets Dn

V and Dn
V by the same formulas

but starting with DV (sV) instead of D(s).
The set 0� is defined in terms of the random variables N n

x : \x # Zd,

0x=[s # 0 | _n(x) \n�n(x), N n
x=0]

and

0= ,
x # Z d

0x (28)
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One can write 0� =0� & _ 0� + , according to the sign of the unique infinite
subset of the lattice of constant sign. See the remark following Lemma 5 in
ref. 1. The point of this definition of 0� is of course that it is large enough
in the sense that one can show that it has measure one and small enough
to ensure the summability of the potentials that we shall define below.
Roughly speaking, it means that around each point of the lattice the size
of a cluster of bad configuration is of finite size. However, as we shall see
later, it is possible to introduce another set 0log that is still of measure 1
and such that the size of the bad cluster around each point is not only
finite, but does not grow faster than some power of the logarithm of the
distance of the point from the origin.

The relative energy of two configurations on the new lattice L in a
volume V is obtained as the logarithm of the limit of the ratio of two parti-
tion functions of the original Ising model with constraints (for the deter-
ministic transformations) or with the addition of interactions of finite range
(given by the size of the boxes Bx) to the energy

:
X & V{<

(8X (s1
X)&8X (s2

X))=log lim
42 A L

lim
41 A Zd

Z+
41

(s1
41

)

Z+
41

(s2
42

)
(29)

with s1
x=s2

x=s� x \x � V, s� # 0� + and

Z+
41

(s42
)=:

_41

`
x # 42

T (sx , _Bx
) exp &;H I (_41

| +) (30)

Of course, we have a similar formula with + replaced by &. The above
formula (29) is obtained through an inductive representation, on each scale
Ln, of the partition function (30) expressed in terms of polymers (con-
tours). It follows then easily that the measures +$+ and +$& are weakly
Gibbsian for the potentials 8X 's (after one shows that the functions 8X 's
do not depend on the sign of the boundary condition on 41). Alternatively,
one can consider the following partition function:

Z f
4(sV)=:

_4

`
x # V

T (sx , _Bx
) exp &;H I (_4 | f ) (31)

with 4=�x # V Bx and following the inductive procedure of ref. 1, one
obtains a representation analogous to the one in ref. 1 (see the appendix),

Z f
4(sV)=(T� ) |V | e f m

f, 4(sV ) exp :
X/V

8m
X (sX) Z� m(sV)#(T� ) |V | Z� f

4(sV) (32)

with m such that |[L&mV]|�Ld. In the following, we shall always consider
the above relation with m=m(V ), where m(V ) is the largest m such that
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|[L&mV]|�Ld, obviously, one has Lm(V )d=C(L) |V | and m(V ) goes to
infinity with V A L. The following properties of Z� m(V )(sV) are derived in the
appendix:

exp(&C(L, ;) |V | )�Z� m(V )(sV)�exp(C(L, ;) |V | ) (33)

and for s # 0�

Z� m(V )(sV) � 1 (34)

when V goes to infinity.
Let us now describe the functions 8m

X and f m
f, 4 . For each connected X

the potential 8m
X is made of two parts

8m
X(sX)=8m1

X (sX)+8m2
X (sX) (35)

with,

8m1
X (sX)= :

m

n=0

:
Di # Dn

ln \n(Di) /(LnD� i=X ) (36)

and

8m2
X (sX)= :

m

n=0

:
Y

.n(Y ) /(LnY� =X ) (37)

with \n(Di) and .n(Y ) such that

|ln \n(D i)|�C(L) ;Lnd (38)

and

|.n(Y )|�exp(&;Ln(1&4:)L&2: |Y | ) (39)

moreover .n(Y )=0 unless Y is connected. : is a positive parameter already
used in the definition of D. L and : are chosen as explained at the beginning
of this subsection. The limits limm � � 8m1

X (sX) and limm � � 8m2
X (sX) exist

and

8X (sX)= lim
m � �

8m1
X (sX)+ lim

m � �
8m2

X (sX) (40)

This is exactly the same definition as the one given in ref. 1. Observe that
it is obvious from the construction that 8X is translation invariant. Let us
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see now why the potential defined in (35) is only pointwise absolutely sum-
mable. The part of the sum involving 82

X does not cause any problem
because the bound (39) is sufficient to show that

:
X % x

|82
X (sX)| (41)

is uniformly (in the configurations s) bounded by a constant C2 . One can
even prove more, namely

:
X % x

exp(d(X ))1&4: |8m2
X (sX)|�C$2 (42)

\m, where d(X ) denotes the diameter of X. The bound (38) is obviously
not enough to prove the analogue for the part of the sum involving 81

X .
The way out of this trouble is to show that, for all s # 0� .

:
X % x

|81
X (sx)| (43)

is bounded by a finite sum. Let, for x # L,

n(x, s)#max[n | [L&nx] # Dn(s)] (44)

Roughly speaking it gives the maximum scale Ln(x, s) at which the image
[L&nx] of x is ``touched'' by a component of Dn. On 0� , this always occurs
on a finite scale, i.e. if s # 0� , n(x, s)<�. Using this fact and (38), one gets
that (43) is bounded by

C1(x, s)#C(L) ; :
n(x, s)

n=0

Lnd=C(L) ;Ldn(x, s) (45)

which is finite on 0� . nV (x, s) is defined similarly, with Dn
V replacing Dn in

(44). We refer to the proof of Lemma 4 in ref. 1 for the proofs of all the
above statements. Let us come to f m

f, 4 ,

f m
f, 4(sV)= :

m

n=0

:
Y/[L&n4]

.n(Y ) /(LnY� & V c{<)

+ :
Di # D

n
V

ln \n(Di) /(LnD� i & V c{<) (46)

One can see that it collects some boundary terms because of the charac-
teristic functions involved in the sum. We want to conclude this section by
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noting that, although the construction of the potential involve some
parameters (L and :), the relative energy is obviously independent of those
parameters, see (29).

3.2. A Class of Tempered Measures

We define here a class of tempered measures M.

M#{translation invariant measures + | _=<0, +(N n
x{0)�

C(=)
Lnd(1+=)=

(47)

We shall need two basic properties of these tempered measures: \+ # M,

} + \ :
X % 0

8X ( } )+ }<� (48)

and +(0� )=1. This last property is obvious because, using the definitions
(28), we see that it is enough to show that +(0c

x)=0 and this is proven by
noticing that \+ # M, one has +(0c

x)�limN � � ��
n=N +(N n

x{0)=0. Let us
now prove (48).

} + \ :
X % 0

8X ( } )+ }�+ \ :
X % 0

|81
X ( } )|+++ \ :

X % 0

|82
X ( } )|+ (49)

The expectation value involving 82
X is obviously bounded because

�X % 0 |82
X | is uniformly bounded. Using (45), we get,

+ \ :
X % 0

|81
X ( } )|+�C(L) ;+(Ln(0, } ) d) (50)

Now, n(0, s)=N means by (27) that _y such that d( y, [L&N0])�2
and N N

y {0 and since there is a finite number of such y's, using the defini-
tion of M, we get

(50)�C(L, =) ; :
�

N=0

LNd

LNd(1+=)<� (51)

which is the desired result. It is easy to see that +$+ and +$& are in M using
(4.44) in ref. 1.
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4. RESULTS

We now introduce the set of boundary configurations 0log for which
one can show the existence of the thermodynamic limit of the pressure.

0log#[s | _a finite connected 4(s)/Zd, \x � 4(s) C1(x, s)

�c1 ;(log |x| )4d�:] (52)

where C1(x, s) is defined in (45) and gives, roughly speaking, the size of the
``bad cluster'' around the point x. The exponent 4d�: on the log is put for
convenience to match the probabilistic estimates of ref. 1. This set is a sub-
set of 0� and is also of measure 1 with respect to +$+ and +$& , if c1 is chosen
large enough. Obviously, if s # 0log then _4(s) and _c$1 such that \x � 4(s),
�X % x |8X (sX)|<c$1;(log |x| )4d�:. Then, our result is;

Theorem 1. Let 8 be the potential defined in (40) for which the
measures +$+ and +$& are weakly Gibbsian, then for c1 in (52) large enough,
+$+(0log)=+$&(0log)=1 and \+ # M,

|+(A8)|<� (53)

with,

A8= :
X % 0

8X

|X |
(54)

\s� # 0log the limit of the pressure ps� exists, is finite, independent of the
boundary conditions and proportional to the pressure of the original Ising
model, ps� #p=bdpIsing . Moreover, \+ # M,

& p�+(A8)+s(+) (55)

and

& p=+$+(A8)+s(+$+)=+$&(A8)+s(+$&) (56)

5. PROOF OF THE THEOREM

In the sequel, we shall denote by +$(sV | s� V c) the conditional
probabilities of the measures +$+ and +$& and we shall use the notation
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+$ when an identity is true for both measures. Let us first show that
+$(0log)=1. We shall prove that +$(0c

log)=0. By definition,

0c
log= ,

�

m=0

0c
log, m (57)

with

0c
log, m=[s | _x � 4m , C1(x, s)<c1;(log |x| )4d�:] (58)

where 4m is a cube of side m and we have,

0c
log, m/ .

x � 4m

0c
log(x) (59)

with,

0c
log(x)=[s | C1(x, s)<c1;(log |x| )4d�:] (60)

By the definition (45) of C1(x, s), this means that there is at least one site
y such that d( y, [L&n(x, s)x])�2 and N n(x, s)

y {0 with a lower bound on
n(x, s) given by

C(L) ;Ln(x, s) d<c1;(log |x| )4d�: (61)

from which we get that n(x, s) must be at least such that L(n(x, s) :)�4>
C(L) log |x|, using then the probabilistic estimates (4.44) and Lemma 6 in
ref. 1, we get

+$(0c
log(x))�exp(&c - ; L:n(x, s)�4) (62)

Thus, we finally obtain that

+$(0log, m)� :
x : |x|>m

exp(&C(L) - ; log |x| ) (63)

So, if we choose C(L) - ; large enough, by taking c1 large enough, the
result +$(0log)=1 follows.

Let us now prove the remaining part of the theorem, |+(A8)|<�
follows obviously from (48) in Subsection 3.2. Then, notice, following
ref. 12, that for s� # 0log and \+ # M, the following identity holds true:

1
|V |

SV (+ | +$V ( } | s� V c))=
1

|V |
SV (+)+

1
|V |

+(HV ( } | s� V c))+
1

|V |
log ZV (s� V c)

(64)
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indeed, we have that

:
sV

+(sV) log
+(sV)

+$(sV | s� V c)
=:

sV

+(sV) log +(sV)&:
sV

+(sV) log +$(sV | s� Vc) (65)

=SV (+)++(HV ( } | s� V c))+log ZV (s� V c) (66)

where we used the DLR equations (10) to obtain the last line and the fact
that 0log/0� .

Observe that the limit of the first term in the right-hand side of the
equality (64) exists and is finite because it is the entropy density of the measure
+, as remarked after the definition (18). Then, the proof of the theorem is
done if we take the limit V going to infinity in (64) and if we prove the
three following propositions.

Proposition 1. \s� # 0log ,

lim
V A L

1
|V |

SV (+$ | +$V ( } | s� Vc))=0 (67)

Proposition 2. \+ # M and \s� # 0log ,

lim
V A L

1
|V |

+(HV ( } | s� Vc))=+(A8)<� (68)

and

Proposition 3. \s� # 0log ,

ps� = lim
V A L

1
|V |

log :
sV

exp :
X & V{<

8X (sX & V 6 s� X & V c)=bdpIsing (69)

Indeed, Proposition 1 and Proposition 2 proves the variational equality
(56) in the Theorem if +=+$, and show indirectly the existence of the
pressure and its independence of the boundary conditions. The fact that the
relative entropy is always positive and Proposition 2 proves the inequality.
Proposition 3 shows that the free energy that we obtain is the free energy
of the Ising model modulo a scale factor. It also provides a more direct
proof of the existence of the pressure.

Proof of Proposition 1. In order to prove this proposition we need
the following lemma whose proof is given in the Appendix:
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Lemma 1.

+$(sV | s� V c)=:
_4

&(_4 | s� V c) T (_4 , sV) (70)

where

&(_4 | s� Vc)= :
_̂�4

exp &H I (_4 | _̂�4)
ZI

4(_̂�4)
+~ s� V c

�4(_̂�4)

for each s� V c , +~ s� V c
�4 is a probability measure on 0�4 and 4=�x # V Bx .

Using then (14), the positivity of the relative entropy and (16), we
may conclude the proof of Proposition 1.

Proof of Proposition 2. First, it is easy to see that one can write
0log=0� +log _ 0&log with 0\log=0\ & 0 log . In the following we shall
alwaysassume that s # 0+log , if s was in 0&log , the only thing to change
would be the sign on the partition function in (75). Let + # M and s� # 0log ,
write,

1
|V |

+(HV ( } | s� V c))

=
1

|V |
+ \ :

X & V{<

8X ( } 6 s� X & V c)& :
X & V{<

8X (s� X) +
+

1
|V |

:
X & V{<

8X (s� X) (71)

We do this in order to be able to use (29) which expresses the relative
energy in the volume V in terms of the logarithm of a ratio of partition
functions of the original Ising model with local interactions (or con-
straints). This will serve to eliminate the dependence of the first two terms
on the configuration outside the volume V. But let us look first at the third
term in the above expression,

1
|V |

:
X & V{<

8X (s� X)=
1

|V |
:

y # V

:
X % y

1
|X & V |

8X (s� X) (72)

=
1

|V |
:

y # V

:
X % y
X/V

1
|X |

8X (s� X)

+
1

|V |
:

y # V

:
X % y

X & Vc{<

1
|X & V |

8X (s� X) (73)
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Using the following Lemma, one sees that the second term of this expres-
sion, which groups the terms involving the configuration outside the
volume V, goes to zero.

Lemma 2. \s� # 0log ,

lim
V A L

1
|V |

:
y # V

:
X % y

X & Vc{<

1
|X & V |

|8X (s� X)|=0 (74)

Using (29), the first two terms of (71) can be reexpressed as

1
|V |

+ \ lim
42 A L

lim
41 A Zd

log
Z+

41
( } 6 s� Vc & 42

)

Z+
41

(s� 42
) + (75)

With the help of (30) and (17), one obtains the following lower and upper
bounds on the ratio of the partition functions

e&4; |�4| Z f
4(sV)

Z f
4(s� V)

�
Z+

41
(sV 6 s� Vc & 42

)

Z+
41

(s� V 6 s� Vc & 42
)
�

Z f
4(sV)

Z f
4(s� V)

e4; |�4| (76)

with 4=�x # V Bx and �4=[x # 4 | d(x, 4c)=1]. Taking then the limit
on V in (75), we obtain

lim
V A L

1
|V |

+ \ lim
42 A L

lim
41 A Zd

log
Z+

41
( } 6 s� V c & 42

)

Z+
41

(s� 42
) += lim

V A L

1
|V |

+ \log
Z� f

4( } )
Z� f

4(s� V)+
(77)

The following Lemma shows that the second and the third term cancel.

Lemma 3. \s� # 0log ,

lim
V A L

1
|V |

log Z� f
4(s� )= lim

V A L

1
|V |

:
y # V

:
X % y
X/V

1
|X |

8X (s� X) (79)

and the last Lemma of this section concludes the proof of Proposition 2.

Lemma 4. \+ # M,

lim
V A L

1
|V |

+(log Z� f
4( } ))=+(A8) (80)
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These last two lemmas are a consequence of the representation (32) estab-
lishing the relationship between the Ising partition function with con-
straints and our potentials 8X . Note that (80) is not a consequence of (79)
because +(0log)=1 does not hold for all + # M. Note also that the exist-
ence of the left-hand side of (79) could be obtained +$ almost surely by
standard arguments in disordered systems (ergodicity), since the spins
[sx | x # V ] can be seen as random fields on the Ising model.

Proof of Proposition 3.

ps� = lim
V A L

1
|V |

log :
sV

exp :
X & V{<

(8X (sX & V 6 s� X & V c)

&8X (s� X))+ lim
V A L

1
|V |

:
X & V{<

8X (s� X) (81)

Using then (29) and following the steps leading from (75) to (77), we
obtain,

ps� = lim
V A L

1
|V |

log :
sV

Z f
4(sV)

Z f
4(s� V)

+ lim
V A L

1
|V |

:
X & V{<

8X (s� X) (82)

Now, by (32), (74) in Lemma 2 and (79) in Lemma 3, we see that

ps� = lim
V A L

1
|V |

log :
sV

Z f
4(sV) (83)

Clearly, by (2) and (31), �sV
Z f

4(sV) is the partition function of the original
Ising model in the volume 4 and because |4|=bd |V |, we finally get,

ps� =bdpIsing (84)

This concludes the proof of Proposition 3.

APPENDIX

A.1. Proof of Lemma 1

This follows mainly from algebraic manipulations. We may construct
+$(sV | s� V c) in the following way:

+$(SV | s� V c)=lim
n

+$(sV 6 s� V c & Vn
)

+$(s� Vc & Vn
)

(85)
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for an increasing sequence of cubes (Vn), Vn/Vn+1 . In the following, we
keep the notation 4=�x # V Bx and 4n=�x # Vn

Bx .

+$(sV 6 s� Vc & Vn
)

=:
_4

:
_̂4c & 4n

+(_4 6 _̂4c & 4n
) `

x # V

Tx(_Bx
, sx) `

x # V c & Vn

Tx(_̂Bx
, s� x) (86)

=:
_4

:
_̂4c & 4n

+(_4 | _̂4c & 4n
) +(_̂4c & 4n

)

_ `
x # V

Tx(_Bx
, sx) `

x # V c & Vn

Tx(_̂Bx
, s� x) (87)

=:
_4

`
x # V

Tx(_Bx
, sx) :

_̂4 c & 4n

exp &H I
4(_4 | _̂�4)

ZI
4(_̂�4)

+(_̂4c & 4n
)

_ `
x # V c & Vn

Tx(_̂Bx
, s� x) (88)

Thus, we obtain that +$(sV | s� Vc)

=lim
n

:
_4

`
x # V

Tx(_Bx
, sx) :

_̂4 c & 4n

exp &H I
4(_4 | _̂�4)

Z I
4(_̂�4)

_
+(_̂4c & 4n

) >x # V c & Vn
Tx(_̂Bx

, s� x)

+$(s� V c & Vn
)

(89)

Next, we define

+~ s� V c & Vn
4c & 4n

(_̂4c & 4n
)#

+(_̂4c & 4n
) >x # Vc & Vn

Tx(_̂Bx
, s� x)

+$(s� Vc & Vn
)

(90)

It is easily checked that it is a probability distribution on 04c & 4n
. We

can then take the restriction of this measure to 0�4 and write, because of
the form of H I

4 ;

+$(sV | s� V c)=lim
n

:
_4

`
x # V

Tx(_Bx
, sx) :

_̂�4

exp &H I
4(_4 | _̂�4)

ZI
4(_̂�4)

} +~ s� V c & Vn
�4, n (_̂�4)

(91)

By compactness, limm +s� V c & Vm
�4, m ( } ) exists for a subsequence and is a probabil-

ity measure on 0�4 , and we finally obtain

+$(sV | s� V c)=:
_4

`
x # V

Tx(_Bx
, sx) :

_̂�4

exp &H I
4(_4 | _̂�4)

ZI
4(_̂�4)

} +~ s� V c
�4(_̂�4) (92)
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A.2. Proof of Lemma 2

For the sake of simplicity take the V's to be a sequence of cube of side
2l (then |V |=(2l+1)d) centered around the origin. Let C(4(s� ))=
supx # 4(s� ) C1(x, s� ), we shall always assume that V is large enough so that
c1;(log |l | )4d�:�C(4(s� )) holds. We may decompose the expression in (74)
in the following way:

1
|V |

:
y # V

d( y, V c)>l1�2

:
X % y

X & V c{<

1
|X & V |

|8X (s� X)|

+
1

|V |
:

y # V
d( y, Vc)�l1�2

:
X % y

X & V c{<

1
|X & V |

|8X (s� X)| (93)

Now, using the definition of 0log , V and A, we further bound the first term
above, because all the terms involved in the sum must have |X & V |>l 1�2

and | y|<l, and obtain:

1
|V |

:
y # V

d( y, Vc)>l1�2

:
X % y

X & Vc{<

1
|X & V |

|8X (s� X)|�
c$1;(log l )4d�:

l 1�2 (94)

so that the first term of (93) goes to zero. Let us now show that its second
term does so too. It can be bounded in the same way and because there are
at most cl 1�2(2l+1)d&1 points y # V such, that d( y, V c)�l 1�2, we get:

1
|V |

:
y # A

:
X % y

1
|X & V |

|8X (s� X)|�
cl 1�2c$1;(log l )4d�:

2l+1
(95)

so, the proof is finished by letting l going to infinity.

A.3. Proof of Lemma 3

By the representation (32),

log Z� 4(s� V)= f m(V )
f, 4 (s� V)+ :

X/V

8m(V )
X (s� X)+log Z� m(V )(s� V) (96)

and using (34), it is clear that the limit of the third term divided by |V |
goes to zero. Let us then prove that \s� # 0log ,

lim
V A L

1
|V |

f m(V )
f, 4 (s� V)=0 (97)
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As f m(V )
f, 4 (s� V) regroups some ``boundary terms,'' we shall reduce the proof of

this fact to the proof of Lemma 2.
Define

8� m1
X (sX)= :

m

n=0

:
Di # D

n
V

ln \n(Di) /(LnD� i=X ) (98)

8� m2
X (sX)= :

m

n=0

:
Y/[L&m4]

.n(Y ) /(LnY� =X ) (99)

and 8� m
X=8� m1

X +8� m2
X . We define 8� X to emphasize the difference with

respect to 8X where the sum runs over connected components of Dn.
Observe that 8� m1

X =0 and 8� m2
X =0 if X & V=< because Dn

V & [L&nV]
{< and the sum in (99) runs over Y/[L&m4]. Then, we can writte,
using (46),

f m(V )
f, 4 (s� V)= :

X & Vc{<

8� m(V )
X (s� X)= :

X & V c{<
X & V{<

8� m(V )
X (s� X) (100)

f m(V )
f, 4 (s� V)= :

y # V

:
X & V c{<

X % y

1
|X & V |

8� m(V )
X (s� X) (101)

Now, we have that

:
X % y

|8� m1
X (s� )|�C1( y, s� ) (102)

\m, because using the bound (38), this sum can be bounded in the same
way than (43) by C(L) ;Ln( y, s� ) d and nV ( y, s� )�n( y, s� ) (because Dn

V/Dn).
Using then the bound (39) on .n, we get that \s� # 0 log , _4(s� ) such that
\y � 4(s� ),

:
X % y

|8� m
X(s� )|�c$1; log | y| (103)

\m. Thus, the proof of limV A L(1�|V | ) f m(V )
f, 4 (s� V)=0 boils down to the

arguments used in the proof of Lemma 2.
We are now left with proving that

lim
V A L

1
|V |

:
X/V

8m(V )
X (s� X)= lim

V A L

1
|V |

:
y # V

:
X % y
X/V

1
|X |

8X (s� X) (104)
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The main difficulty in doing this lies in the fact that the objects over which
we sum and the sum itself depend on V, hence, we need the following

Lemma 5. \s # 0log , _V� such that \V#V� , \y # V and \X % y,

8m(V ) 1
X (sX)=81

X (sX) (105)

and, \s, \y

:
X % y

|82
X (sX)&8m(V )2

X (sX)|�c exp &cLm(V )(1&4:) (106)

It is then clear that we may obtain the desired result.

A.4. Proof of Lemma 4

We have,

+(log Z� 4( } ))=+( f m(V )
f, 4 ( } ))++ \ :

X/V

8m(V )
X ( } )+++(log Z� m(V )( } )) (107)

using (34) and the fact that \+ # M, +(0� )=1, one sees that Z� m(V )(sV)
converges pointwise +-a.s. to 1, which, together with the bounds (33) and
Lebesgue dominated convergence theorem, implies that

lim
V A L

+ \ 1
|V |

log Z� m(V )( } )+=0 (108)

Let us now show that

lim
V A L

1
|V |

|+( f m(V )
f, 4 ( } ))|= lim

V A L

1
|V |

+ \ :
y # V

:
X & Vc{<

X % y

1
|X & V |

|8� m(V )
X ( } )|+=0

(109)

To see this, observe that

|8� m(V ) 1
X (sX)|� :

�

n=0

:
Di # D

n
V

|ln \n(D i)| /(LnD� i=X )=C� X (sX) (110)

and following the proof of +(�X % 0 8X ( } ))<�, one sees that

+ \ :
X % y

C� X ( } )+�C(L) ;+(LnV ( y, } ) d)�+(Ln( y, } ) d)�c<� (111)
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independently of y (by translation invariance of + and n), where the second
inequality follows from the fact that Dn

V/Dn. Thus because 8� m2
X is

uniformly absolutely summable (see Subsection 3.1), |8� m
X (sX)| is itself

bounded by a function CX such that +(�X % y CX ( } ))�c<�. Using this
fact, we obtain,

+ \ 1
|V |

:
y # V

:
X % y

X & V c{<

1
|X & V |

8� m(V )
X ( } )+�

1
|V |

:
y # V

:
X % y

X & Vc{<

C� X (112)

with C� X=+(CX ( } )). This expression can be further bounded by

1
|V |

:
y # V

:
X % y

X & (W+ y)c{<

C� X+
1

|V |
:

y # V
(W+ y) & Vc{<

:
X % y

C� X (113)

for any connected subset W of L, where W+ y denotes the translate of W
by y. The second term goes to zero as V goes to infinity and the first one
can be made aribtrarily small by suitably chosing W.

Finally, let us now prove that

lim
V A L

1
|V |

+ \ :
X/V

8m(V )
X ( } )+=+(A8) (114)

Using translation invariance, write,

lim
V A L

1
|V |

+ \ :
X/V

8m(V )
X ( } )+

= lim
V A L

+ \ :
X % 0

1
|X |

8m(V )
X ( } )+& lim

V A L
+ \ 1

|V |
:

y # V

:
X % y

X & Vc{<

1
|X |

8m(V )
X ( } )+

(115)

The second term in the right-hand side is zero exactly for the same reason
that (109) holds (replace everywhere Dn

V with Dn and the corresponding
quantitites depending on it). The first one is +(A8). This statement follows
if we show

lim
m � �

+ \ :
X % 0

1
|X |

8m
X( } )+=+ \ :

X % 0

1
|X |

8X ( } )+ (116)

First, observe that limm � � �X % 0 (1�|X | ) 8m
X (sX)=�X % 0 (1�|X | ) 8X (sX),

+-a.s., by dominated convergence (for the series), which follows from the
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proof of the summability of the potential explained in Subsection 3.1 (each
|8m

X | is bounded by CX defined as above but with Dn instead of Dn
V) and

limm � � 8m
X (sX)=8X (sX). Then, applying again dominated convergence

using |+(A8)|<� and the fact that |�X % 0 (1�|X | ) 8m
X (sX)| is bounded

independently of m by a function that is +-summable (e.g. �X # 0 CX), we
conclude the proof of (116).

A.5. Proof of Lemma 5

Again, let C(4(s� ))=supx # 4(s� ) C1(x, s� ) and assume the V 's to be a
sequence of cube of side l and that V is large enough so that c1;(log |l | )4d�:

�C(4(s� )). Let us prove first (105). First, observe that \s # 0� , \X % y one
has

8m1
X (sX)=81

X (sX) (117)

\m>n( y, s), because if it is not the case, _m>n( y, s) and Di # Dm such
that [L&my] # D� i , by (36). Using then the definition of 0log and (45), one
sees that \s� # 0log , n(x, s) is such that Ln(x, s) d�C(L)(log | y| )4d�:. On the
other hand, Lm(V ) d=C(L) |V |=C(L) l d, so that if we take V large
enough, we haven \y # V( | y|<l ), m(V )>n( y, s� ) and thus, \X % y,

8m(V ) 1
X (sX)=81

X (sX) (118)

Let us now prove (106). Let m� (X ) be the largest m such that _Y such
that LmY� =X, obviously m� (X ) is such that Lm� (X )�Cd(X ), thus, using
(37), one obtains that \X such that d(X )<cLm(V ),

82
X (sX)=8m(V ) 2

X (sX) (119)

and thus,

:
X % y

|82
X (sX)&8m(V ) 2

X (sX)|� :
X % y

d(X )>cLm(V )

|82
X (sX)|+|8m(V ) 2

X (sX)| (120)

and using (42), we may bound this expression by 2C$2 exp &cLm(V )(1&4:),
which concludes the proof of Lemma 3.

A.6. Proof of Various Statements in Subsection 3.1

We refer to ref. 1 for all the relevant definitions.

Representation (32). Z f
4 is given by the sum (3.12) in ref. 1 if we take

42=V and 41=4. Besides, in the case of free boundary conditions the
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signs of the contours are automatically compatible with it. Applying the
results of Proposition 3 in ref. 1 (and the construction in the proof of it) to
this particular case, (3.25) in ref. 1 becomes \m such that |[L&mV]|>Ld,

Z f
4(sV)=(T� ) |V | e f m

f, 4(sV ) exp :
X/V

8m
X (sX) Z� m(sV) (121)

Z� m(sV) is given by (3.26) in ref. 1 and f m
f, 4(sV) is defined inductively by

(4.20) in ref. 1. The potentials 8m
X are also defined inductively by (4.18) in

ref. 1. In (36) we write the potential directly in terms of components of Dm

(and not in terms of components of Dm
V) because all the X 's that we con-

sider are included in V and because it is easy to see inductively that ``Di is
connected component of Dm

V such that LmD� i/V '' is equivalent to ``Di is
connected component of Dm such that LmD� i/V.'' Similarly, in (37) we
drop the superscript + on .n in the definition (4.18) in ref. 1 because it is
shown to be independent of the boundary conditions in Lemma 4 of ref. 1.

Properties (33) and (34). The proof of (34) is identical to the proof
of (4.34) in ref. 1, once we prove that for s # 0� and for n large enough,
Dn

V=< which follows from the following observations, Dn
V/Dn &

[L&nV], [L&m(V )V]/L2[0] (where L2[0] is the cube of size L2 around
the origin) and if s # 0� , _n such that \m>n, Dm(s) & L2[0]=<. The
upper bound in (33) follows from the representation (3.26) in ref. 1.
Observe that the number of families of contours in this equation is
bounded by a constant C(L) because [L&m(V )V]/L2[0]. Using then the
fact that Lm(V ) d=C(L) |V |, the bounds (3.29), (3.31) and Lemma 6 in
ref. 1 the claim follows. The lower bound follows easily from the fact that
Dm(V )

V is obviously a family of sm(V )-compatible contours, the bounds of the
Lemma 6 and (3.29) in ref. 1, the positivity of the weights of the contours
and again the fact that Lm(V ) d=C(L) |V |.
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